照明設計の際、その照明効果が適切であることはもちろんです。その効果の経済性についても十分考慮しなければなりません。検討項目として初期設備費、固定費、電力費、維持費に分けられますが、一般にはこれらを総合して単位期間中（一般には1年）、単位照度当たり最も安価につくものを最良とします。ここでは、「日本照明器具工業会 技術資料114-1996」に基づいた計算方法を説明します。ただし、価格や数値がはっきりしているものについてはその値を採用してください。

照明施設の経済比較は、原則として平均照度当たりの1年間の照明費によります。これは1lx当たりを得るためにかかる費用のことで、この値が小さいほど経済的といえます。ただし、施設によっては年間照明費で判断した方がよい場合もあります。

1lx当たりの照明費 = 照明費／平均照度

照明費 = 固定費 + 年間電力費 + 維持費

固定費 = 光源を除いた設備費 × 0.14

設備費 = 照明器具費 + 光源費 + 安定器費 + 取付費 + 配線工事費

(1) 配線工事費
配線工事費は分電盤以降（分電盤含む）の1灯当たりの配線費と工事費の合計となります。照明の所要電力の比率が大きくなる場合は電源トランスも含めてください。表1.1～1.3に標準的な取付け配線費（含工事費）を示します。

表1.1 蛍光灯器具の配線取付け単価

<table>
<thead>
<tr>
<th>器具の種類</th>
<th>設計照度(1lx)</th>
<th>500未満</th>
<th>500以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>40形</td>
<td>15,000円</td>
<td>18,000円</td>
<td></td>
</tr>
<tr>
<td>50形</td>
<td>21,000円</td>
<td>27,000円</td>
<td></td>
</tr>
<tr>
<td>60形</td>
<td>15,000円</td>
<td>18,000円</td>
<td></td>
</tr>
<tr>
<td>70形</td>
<td>24,000円</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80形</td>
<td>30,000円</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90形</td>
<td>46,000円</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100形</td>
<td>55,000円</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注）40形、50形、60形、70形、80形、90形、100形、110形:

日本照明器具工業会 技術資料114-1996

表1.2 屋内照明用HID器具の配線取付け単価

<table>
<thead>
<tr>
<th>器具の種類（光源光束による分類）</th>
<th>設計照度(1lx)</th>
<th>500未満</th>
<th>500以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>光束20,000lm未満</td>
<td>40,000円</td>
<td>40,000円</td>
<td></td>
</tr>
<tr>
<td>光束20,000lm以上40,000lm未満</td>
<td>70,000円</td>
<td>55,000円</td>
<td></td>
</tr>
<tr>
<td>光束40,000lm以上60,000lm未満</td>
<td>116,000円</td>
<td>81,000円</td>
<td></td>
</tr>
<tr>
<td>光束60,000lm以上</td>
<td>137,000円</td>
<td>95,000円</td>
<td></td>
</tr>
</tbody>
</table>

日本照明器具工業会 技術資料114-1996

表1.3 屋外スポーツ照明用HID器具の配線取付け単価

<table>
<thead>
<tr>
<th>器具の種類</th>
<th>単価</th>
</tr>
</thead>
<tbody>
<tr>
<td>逆光器</td>
<td>35,000円</td>
</tr>
</tbody>
</table>

日本照明器具工業会 技術資料114-1996
年間電力費 = 器具の消費電力 × 取付け台数 × 年間点灯時間 × 電気料金

(1) 器具の消費電力
白熱灯の場合は、電球の消費電力がそのまま器具の消費電力となりますが、蛍光灯やHIDのような放電灯は安定器損失分も含めて消費電力とします。

(2) 年間点灯時間
施設によって点灯時間は種々ですが、特に指定がない場合は表1.4を採用してください。

(3) 電気料金
電気料金は基本料金と電力量料金を合わせ1kWh当たりの金額で表してあります。電力会社、契約種別、使用電力量によって異なりますが、9電力会社の平均的目安を表1.5に示します。

維持費 = 交換光源費 + ランプ交換人件費 + 照明器具清掃費 + 修繕補修費

(1) 交換ランプ費
集団交換の場合の交換ランプ費は次のようにします。集団交換とは点ランプはそのままで、保守時点で全てのランプを一斉に交換する方式です。

交換ランプ費 = 光源単価 × 年間ランプ交換数

年間光源交換数 = 年間点灯時間 × 基本使用台数 / ランプの定格寿命 × 0.7

ランプ交換の時期は、ランプの定格寿命の70%として計算します。

(2) ランプ交換人件費・照明器具清掃費
表1.6〜1.9に示します。
(3) 修繕補修費
使用期間中に発生する透光性カバー、ソケットの破損、安定器交換等の照明器具補修費並びに配線補修費として、年間で、ランプ、グロースタータを除いた設備費の1%（0.01）を見積ります。

表1.6 ランプ交換人件費

<table>
<thead>
<tr>
<th>照明器具</th>
<th>ランプの種類</th>
<th>HIDランプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>事務所・工場</td>
<td>3.5m未満</td>
<td>200 円</td>
</tr>
<tr>
<td></td>
<td>3.5m以上</td>
<td>400 円</td>
</tr>
</tbody>
</table>

（備考）道路等の道路照明器具の場合は、1灯当たり10,000 円とします。

表1.7 器具清掃費（取付け高3.5m未満）

<table>
<thead>
<tr>
<th>照明器具</th>
<th>ランプの種類</th>
<th>HIDランプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>露出形</td>
<td>32W</td>
<td>1,150 円</td>
</tr>
<tr>
<td>下面開放形</td>
<td>1,500 円</td>
<td>1,150 円</td>
</tr>
<tr>
<td>カバー付き形</td>
<td>2,250 円</td>
<td>1,800 円</td>
</tr>
</tbody>
</table>

（備考）道路等の道路照明器具の場合は、1灯当たり12,500 円とします。

表1.8 器具清掃費（取付け高3.5m以上）

<table>
<thead>
<tr>
<th>照明器具</th>
<th>ランプの種類</th>
<th>HIDランプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>露出形</td>
<td>1,800 円</td>
<td>1,350 円</td>
</tr>
<tr>
<td>下面開放形</td>
<td>2,250 円</td>
<td>1,800 円</td>
</tr>
<tr>
<td>カバー付き形</td>
<td>3,450 円</td>
<td>2,650 円</td>
</tr>
</tbody>
</table>

（備考）道路等の道路照明器具の場合は、1灯当たり12,500 円とします。
経済比較計算例
工場照明において、従来形セード（照明方式Ⅰ）、新形セード（照明方式Ⅱ）、新形増反射セード（照明方式Ⅲ）を比較した例を次に示します。

<table>
<thead>
<tr>
<th>共通条件</th>
<th>面積</th>
<th>20.0 m × 32.0 m = 640.00 (㎡)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>照明方式</td>
<td>照明器具</td>
<td>器具形状</td>
<td>照明器具数/器具台数(台)</td>
</tr>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>SAW413</td>
<td>1/A7×A6×A4×A5/広 Spaceshift</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>SAW415 (中照形)</td>
<td>1/A7×A6×A4×A5/広 Spaceshift</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>SAW415（中照形）</td>
<td>1/A7×A6×A4×A5/広 Spaceshift</td>
</tr>
<tr>
<td>照明方式</td>
<td>ランプ形状</td>
<td>HF400X</td>
<td>H4CC2A/B352</td>
</tr>
<tr>
<td>安定器形状</td>
<td>H4CC2A/B352</td>
<td>H4CC2A/B352</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>40</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>40</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>532</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>546</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>0.14</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>0.14</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>88</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>439,320</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>318,080</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>209,664</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>30.7</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>12.4</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>12,000</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>15,000</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>20,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>12</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>101,250</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>213,600</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>78,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>1.00</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>1.00</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>18,776,500</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>6,150,000</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>474,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>49</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>1,877,650</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>12,268,000</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>799,040</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>65</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>3,559</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>2,245</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>1,576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>照明方式</th>
<th>照明器具</th>
<th>照明器具数/器具台数(台)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ⅰ</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Ⅱ</td>
<td>64</td>
</tr>
<tr>
<td>III</td>
<td>Ⅲ</td>
<td>45</td>
</tr>
</tbody>
</table>
(1) 二酸化炭素排出量

電気の使用にともなう二酸化炭素排出量の計算には、1 kWh あたりの排出量を示した排出係数を利用します。排出係数は、電気供給者による違いや、火力や原子力などの発電比率の違いにより様々な値が公表されています。

地球温暖化対策推進法で毎年公布されることになっている政令で定められる全電源平均の「デフォルト値」と呼ばれるもの、電気事業連合会から報告されるもの、各電力会社から発電比率により報告されるものなどがあり、目的に最も近い算定基準の値を採用することが必要です。照明器具工業会では、環境省の環境家計簿用排出係数の値（0.43 kg-CO₂/kWh）を採用しています。

経済比較計算例（表1.10）の I では、年間電力量が49800 kWhなので、

\[49800 \times 0.43 = 21414 \text{ kg} \approx 21.4 \text{ t} \]

の二酸化炭素排出量となります。
照明設備は長時間使用しますと、光源自体の光束の低下や、器具表面の汚れ、室内面の汚れによって照度が徐々に低下してきます。このような照度の低下を補うため照明計算の中に各種の状況を想定した補正係数（保守率）を加え、その設備に必要な照度（維持照度）より高い値を計画します。

4.2 保守管理

保守率（M）の算定

1. 使用光源の交換時間の設定

光源の設計光束維持率（MI）（交換時間に応じた）を図2.1～2.3により読み取る。

2. 周囲環境の選定（表2.1）

周囲環境を表2.1により分類し定める。

3. 照明器具の選定（表2.2）

照明器具の設計光束維持率曲線（図2.4）のカテゴリー（A～H）を表2.2により定める。

4. 照明器具の清掃間隔の設定

清掃間隔に応じた照明器具の設計光束維持率（Md）を図2.4から読み取る。

5. 保守率（M）を算出する

\[M = M_I \times M_d \]

清掃間隔を年1回としたときの標準的保守率を表2.3～2.4に示します。
照明経済と保守計画

図2.1 白熱電球系の設計光束維持率曲線（M_l）

図2.2 荧光ランプの設計光束維持率曲線（M_l）

図2.3 HIDランプの設計光束維持率曲線（M_l）

照明学会技術指針JIEG-001(2005)
図2.4 照明器具の設計光束維持率曲線（Md）

表2.1 周囲環境の分類

<table>
<thead>
<tr>
<th>周囲環境屋内外区分</th>
<th>良 い</th>
<th>普 通</th>
<th>悪 い</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋 内</td>
<td>・じんあいの発生が少なく常に室内の空気が清浄に保たれている場所（例）待合室、応接室、事務室、個人室、コンコース、ロビー、店内全般、展示陳列室、休憩所
・水蒸気、じんあい、煙などがそれほど多く発生しない場所（例）製造室、電気室、倉庫
・住宅一般</td>
<td>・一般に使用される施設、場所（例）待合室、応接室、事務室、個人室、コンコース、ロビー、店内全般、展示陳列室、休憩所
・水蒸気、じんあい、煙などがそれほど多く発生しない場所（例）製造室、電気室、倉庫
・住宅一般</td>
<td>・水蒸気、じんあい、煙などを多量に発生する場所（例）金属、機械、自動車、化学、セメント、ゴム、繊維、パルプ、ガラス、出版、印刷、造船などの製造・組立工場、倉庫、調理室、室内駐車場
・住宅一般</td>
</tr>
</tbody>
</table>
表2.2 照明器具の種類と周囲環境との組合せ
照明学会技術指針JIEG-001(2005)

<table>
<thead>
<tr>
<th>周囲環境</th>
<th>露出形</th>
<th>下面開放形</th>
<th>簡易密閉形（下面カバー付）</th>
<th>完全密閉形</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋内</td>
<td>屋外</td>
<td>屋内</td>
<td>屋外</td>
<td>屋内</td>
</tr>
<tr>
<td>HID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>白熱電球系</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電球形蛍光ランプ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>蛍光ランプ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>白熱電球系</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電球形蛍光ランプ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>周囲環境</th>
<th>露出形</th>
<th>下面開放形</th>
<th>簡易密閉形（下面カバー付）</th>
<th>完全密閉形</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋内</td>
<td>屋外</td>
<td>屋内</td>
<td>屋外</td>
<td>屋内</td>
</tr>
<tr>
<td>良い</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>普通</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>悪い</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>
表2.3 標準的保守率（屋内）

照明経済と保守計画
表2.3 標準的保守率（屋内） 照明学会技術指針JIEG-001(2005)

<table>
<thead>
<tr>
<th>照明器具の種類</th>
<th>周囲環境</th>
<th>白熱電球</th>
<th>ミクレゾン電球</th>
<th>ハロゲン電球</th>
<th>電球形蛍光ランプ</th>
<th>蛍光ランプ(FHT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>良い</td>
<td>普通</td>
<td>悪い</td>
<td>良い</td>
<td>普通</td>
</tr>
<tr>
<td>I₁ 出形</td>
<td>HID.白熱電球系、 電球型蛍光ランプ</td>
<td>0.91</td>
<td>0.89</td>
<td>0.84</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>蛍光ランプ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I₂ 下顔開放形（下面粗いルーバ）</td>
<td>0.84</td>
<td>0.79</td>
<td>0.70</td>
<td>0.81</td>
<td>0.77</td>
<td>0.67</td>
</tr>
<tr>
<td>I₃ 簡易密閉形（下面カバー付）</td>
<td>0.79</td>
<td>0.74</td>
<td>0.70</td>
<td>0.77</td>
<td>0.72</td>
<td>0.67</td>
</tr>
<tr>
<td>I₄ 完全密閉形（パッキン付）</td>
<td>0.89</td>
<td>0.84</td>
<td>0.79</td>
<td>0.86</td>
<td>0.81</td>
<td>0.77</td>
</tr>
</tbody>
</table>

注）交換時間は、白熱電球系は不点になるまで、その他は定格寿命の約80％の時点を目安とした。
表2.4 標準的保守率（屋外）

照明経済と保守計画

<table>
<thead>
<tr>
<th>照明器具の種類</th>
<th>種類</th>
<th>良好</th>
<th>普通</th>
<th>悪い</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>高圧ナトリウムランプ（NH）</td>
<td>20,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>電球形蛍光ランプ（EFA）</td>
<td>5,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ミニクリプトン電球（LDS）</td>
<td>2,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>コンパクト蛍光ランプ（FHT）</td>
<td>8,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ハロゲン電球（LDV）</td>
<td>1,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>メタルハライドランプ（ML）</td>
<td>7,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>蛍光ランプ（FHF）</td>
<td>10,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>白熱電球（LW）</td>
<td>1,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ハイドランプ（M）</td>
<td>7,000時間</td>
<td></td>
</tr>
<tr>
<td></td>
<td>蛍光ランプ（FLR）</td>
<td>10,000時間</td>
<td></td>
</tr>
</tbody>
</table>

注)交換時間は、白熱電球系は不点になるまで、その他は定格寿命の約90%の時点を目安とした。

＜参考＞

<table>
<thead>
<tr>
<th>照明器具の種類</th>
<th>周囲環境</th>
<th>良好</th>
<th>普通</th>
<th>悪い</th>
<th>良好</th>
<th>普通</th>
<th>悪い</th>
<th>良好</th>
<th>普通</th>
<th>悪い</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.72</td>
<td>0.70</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.66</td>
<td>0.63</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.70</td>
<td>0.66</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注)特性改善の可能性あり。
4.3 エネルギー管理

4.3.1 省エネ法

照明設備に係るエネルギーの効率的利用は、経済性とともに省エネという観点でも重要であり、その省エネ基準は「エネルギーの使用の合理化に関する法律（以下省エネ法）」によっています。

省エネ法は、石油ショックを背景に1979年に制定されましたが、近年の一層の地球温暖化対策推進のたびに強化が重ねられ、工場、建築物、運輸等の様々な分野にエネルギー管理の仕組みが導入されてきました。

さらに、京都議定書の目標達成のため、近年大幅にエネルギー消費量が増加している分野に対して2008年5月に改正がなされました。

今回の改正により、建築分野では2009年4月から、大規模な建築物の省エネ措置が著しく不十分である場合の命令、住宅事業建主が新築する戸建て住宅の省エネ性能向上を促す措置が導入されました。また、2010年4月からは、省エネ措置届出の提出義務の対象となる建築物の適用範囲が拡大されます。

省エネ措置の所轄行政庁への提出において照明設備の省エネ判断基準は、性能型基準（CEC/L）と簡易な仕様型基準（ポイント法）があり、新たに届出の対象となる中小規模の建築物に対しては、現行のポイント法よりさらに評価がしやすくなった簡易のポイント法が設定されます。

4.3.2 性能型基準

*Coefficient of Energy Consumption for Lightingの略

(1) 照明消費エネルギー係数

照明設備に係るエネルギーの効率的利用の程度を評価する判断基準としては、照明消費エネルギー係数（以下「CEC/L」）が用いられます。CEC/Lは、建築物に設置される照明設備システム全体が1年間に実際に消費すると予測されるエネルギー量すなわち「年間照明消費エネルギー量」を熱量に換算した値を、その設備システムに対して想定される標準的な年間消費エネルギー量すなわち「年間仮想照明消費エネルギー量」を熱量に換算した値で除したものであり、次式で定義されます。

$$\text{CEC/L} = \frac{\text{年間仮想照明消費エネルギー量（kWh/年）} \times \text{電気の一次エネルギー換算値（kWh/kWh）}}{\text{年間照明消費エネルギー量（kWh/年）} \times \text{電気の一次エネルギー換算値（kWh/kWh）}}$$

この式では、値が小さいほどその照明設備システムに係わるエネルギーがより効率的に利用されていることを意味し、この値を照明設備システムが設けられるすべての用途の建築物に対して、表3.1に示すように、1.0以下とすることが求められています。

表3.1 評価基準

<table>
<thead>
<tr>
<th>建築物の用途</th>
<th>ホテル等</th>
<th>病院等</th>
<th>物品販売業を営む店舗等</th>
<th>事務所等</th>
<th>学校等</th>
<th>飲食店等</th>
<th>集合所等</th>
<th>工場等</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC/L基準値</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

「建築物の省エネルギー基準と計算の手引き」（財団法人 建築環境・省エネルギー機構）
(2) CEC/Lの計算

消費エネルギー量は、計算書ではその他設備との比較の必要から熱量表示が求められます。CEC/Lの計算では熱量に換算する必要はありません。

$$CEC/L = \frac{\sum E_T}{\sum E_S} = \frac{\sum (W_T \times A \times T \times F/1000)}{\sum (W_S \times A \times T \times Q_1 \times Q_2/1000)}$$

評価計算式の各記号の名称・定義および求め方

- E_T : 各室（区画）の年間照明消費電力量（kWh）
- E_S : 各室（区画）の年間仮想照明消費電力量（kWh）
- W_T : 各室（区画）の計画照明消費電力（W/㎡）
- W_S : 各室（区画）の標準照明消費電力（W/㎡）
- A : 各室（区画）の床面積（㎡）
- T : 各室（区画）の年間照明点灯時間（h）
- F : 照明設備の制御による補正係数（無次元）
- Q_1 : 照明設備の種類による補正係数（無次元）
- Q_2 : 照明設備の照度による補正係数（無次元）
CEC/L計算のフローを図3.1に示します。

標準照明消費電力 Ws （表3.4, 3.5より）
各区画の照明設備の種類による補正係数 Q_1 （表3.6より）
各区画の照明設備の照度による補正係数 Q_2 （表3.7より）
各区画の床面積 A
各区画の年間照明点灯時間 T （表3.2より）
各区画の仮想照明消費電力量 Es $Ws \times A \times T \times Q_1 \times Q_2 / 1000$
計画照明消費電力 W_T
各区画の照明設備の制御等による補正係数 F （表3.3より）
各区画の照明消費電力量 E_T $W_T \times A \times T \times F / 1000$
建築物全体の年間仮想照明消費エネルギー量 ΣEs
建築物全体の年間照明消費エネルギー量 ΣE_T

図3.1 CEC/L計算のフロー
(3)年間照明消費エネルギー量

CEC/Lの分子である「年間照明消費エネルギー量(kWh/年)」は、実際に建設される建築物の照明計画において採用される照明設備システム、制御設備システムにおいて、建築物全体として1年間に消費すると計算される照明エネルギー量です。照明設備システムが設置される照明区画毎に、「計画照明消費電力Wt(W/㎡)」と空間の「床面積A(㎡)」と空間の機能別にあらかじめ定められている「年間標準照明点灯時間T(h)」（表3.2）を乗じて求めた値すなわち「照明消費電力量Et(kWh/年)」を、全ての照明区画について積算して求めます。

建築物の各照明区画に設置される照明設備システムにエネルギー消費の低減に有効な制御システムが採用される場合には、その有効性に応じて「照明設備の制御等による補正係数F(無次元)」（表3.3）を当該照明区画の照明消費電力量に乗じてその低減分を補正します。

実務上の計算過程では、計画照明消費電力Wtと床面積Aの積は、照明器具1台あたりの入力電力（安定器損失を含む）と照明器具台数の積として直接的に算出されるため、実際にはWtを計算する必要がありませんが、計画照明消費電力Wtを標準照明消費電力Wsに照らして検討することは、計画上は有意義で必要な過程です。

![表3.2 Tの設定値](image)

<table>
<thead>
<tr>
<th>年間稼働日数</th>
<th>1日の使用時間</th>
<th>12h</th>
<th>8h</th>
<th>4h</th>
<th>2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>365日（年間全日）</td>
<td>24h</td>
<td>9,000</td>
<td>6,000</td>
<td>4,500</td>
<td>3,000</td>
</tr>
<tr>
<td>310日（週1休）</td>
<td>16h</td>
<td>7,500</td>
<td>5,000</td>
<td>3,750</td>
<td>2,500</td>
</tr>
<tr>
<td>248日（土日祝休）</td>
<td>12h</td>
<td>6,000</td>
<td>4,000</td>
<td>3,000</td>
<td>2,000</td>
</tr>
<tr>
<td>不定期間欠的利用</td>
<td>8h</td>
<td>24×日数</td>
<td>16×日数</td>
<td>12×日数</td>
<td>8×日数</td>
</tr>
</tbody>
</table>

* 評価対象の空間（区間）毎に、年間稼働日数と照明設備システムの1日使用時間を勘案して、一番近似する欄の数値を選択する。
* 当該評価対象建築物の年間稼働日とは無関係に照明設備システムが使用される空間（区間）については、相当する年間稼働日を参照する。
* 不定期あるいは間欠的に使用される照明設備システムにおいては、その使用の実情に応じて、最下欄の数値を使用する。
* 計画や設計に伴い、別途正確な年間点灯時間の推定がなされている場合は、その数値を用いてもよい。

「建築物の省エネルギー基準と計算の手引き」（財団法人 建築環境・省エネルギー機構）

![表3.3 照明施設の制御による補正係数F](image)

<table>
<thead>
<tr>
<th>制御の方法</th>
<th>係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>カード、センサ等による在室検知制御</td>
<td>0.80</td>
</tr>
<tr>
<td>明るさ感知による自動点滅制御</td>
<td>0.85</td>
</tr>
<tr>
<td>通常照度制御</td>
<td>0.90</td>
</tr>
<tr>
<td>タイムスケジュール制御</td>
<td>0.85</td>
</tr>
<tr>
<td>昼光利用照明制御</td>
<td>0.90</td>
</tr>
<tr>
<td>ソーニング制御</td>
<td>0.90</td>
</tr>
<tr>
<td>局所制御</td>
<td>1.00</td>
</tr>
</tbody>
</table>

「建築物の省エネルギー基準と計算の手引き」（財団法人 建築環境・省エネルギー機構）
CEC/Lの分母である「年間仮想照明消費エネルギー量(kWh/年)」は、建築物におけるさまざまな照明区域を標準的な照明設備システムにより照明することで照明環境の質を一定のレベルに維持する場合に必要な照明エネルギー量について、建築物全体として1年間に消費すると計算予測される照明エネルギー量です。照明設備システムが設置される建築物の照明区域毎に、空間の機能別にあらかじめ定められている「標準照明消費電力Ws(W/㎡)」(表3.4, 3.5)にその区域の「床面積A(㎡)」と空間の機能別にあらかじめ定められている「年間照明点灯時間(h)」を乗じて求めた値、すなわち「仮想照明消費電力量Es(kWh/年)」をすべての照明区域について積算して求めます。

用途などの観点から高度の視機能が要求される照明環境や高い質的水準を必要とする照明環境については、そのために要する最低限のエネルギー消費の増加を許容する必要があります。そのため、建築物の照明区域に設置される照明設備システムが標準より若干多くのエネルギー消費を必要とする場合には、その必要の程度に応じて2種類の補正がなされます。すなわち「照明設備の種類による補正係数Q1(無次元)」と「照明設備の照度による補正係数Q2(無次元)」を当該空間の標準照明消費電力量に乗じて、質的向上のための消費エネルギーの増加をあらかじめ標準照明消費エネルギー量を表現する分母に見込むことを意味します(表3.6, 表3.7)。

表3.4 Wsの設定値(一般空間)

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>対象空間の例</th>
<th>Ws (W/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>玄関ホール・エントランス(店舗)</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>営業室(官庁・銀行・証券・記入・保険・商社・不動産・建設などあらゆる業種)製図質・設計室・デザイン室</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>玄関ホール・エントランス(店舗以外)</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>ラウンジ・フロント・受付</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>コンピュータ室・管理室・制御室・監視室・防災センター</td>
<td></td>
</tr>
</tbody>
</table>
表3.5 Wsの設定値（特殊空間）

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>対象空間の例</th>
<th>Ws (W/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>手術室・分娩室</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>救急窓口</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>スポーツ公式競技</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>スポーツ一般競技・スポーツ室内競技</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>スポーツ練習・リクリエーションスポーツ</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>病室・リネン機材室</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>バー・キャバレー・ナイトクラブなどの客席</td>
<td>5</td>
</tr>
</tbody>
</table>

（注）（1）の照明設備の中には、埋め込みダウンライト（光源を問わない。ただし器具下面から光源が露出しないものに限る）や間接照明、建築化照明等が含まれる。建築化照明とは、ウォールウォッシュ照明、コーブ照明、コーニス照明、バランス照明、光天井照明、ルーバ天井照明等のことである。特別の調査又は研究の成果に基づいて係数を算出する場合は、その数値を補正係数Q1として用いることができる。

表3.6 照明設備の種類による補正係数Q1

<table>
<thead>
<tr>
<th>種類</th>
<th>補正係数Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1.3</td>
</tr>
<tr>
<td>(2)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

（注）(1)の照明設備の中には、埋め込みダウンライト（光源を問わない。ただし器具下面から光源が露出しないものに限る）や間接照明、建築化照明等が含まれる。建築化照明とは、ウォールウォッシュ照明、コーブ照明、コーニス照明、バランス照明、光天井照明、ルーバ天井照明等のことである。特別の調査又は研究の成果に基づいて係数を算出する場合は、その数値を補正係数Q1として用いることができる。
表3.7 照明設備の照度による補正係数Q2

<table>
<thead>
<tr>
<th>用途</th>
<th>補正係数Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 物品販売業を営む店舗等の売場および事務所等の事務室</td>
<td>L/750</td>
</tr>
<tr>
<td>(2) 学校等の教室</td>
<td>L/500</td>
</tr>
<tr>
<td>(3) その他</td>
<td>1.0</td>
</tr>
</tbody>
</table>

この表において、Lは設計照度（単位ルクス）を表すものとする。

「物品販売業を営む店舗等」とは、百貨店、マーケット、その他エネルギーの使用の状況に関してこれらに類するものをいう。

「事務所等」とは、事務所、税務署、警察署、消防署、地方公共団体の支庁、図書館、博物館、郵便局その他エネルギーの使用の状況に関してこれらに類するものをいう。

「学校等」とは、小学校、中学校、高等学校、大学、高等専門学校、専修学校、各種学校その他エネルギーの使用の状況に関してこれらに類するものをいう。

(注) (1)については、物品販売業を営む店舗等の売場の全般照明を白熱電球照明（ハロゲン電球の照}
(1)仕様型基準の適用

省エネ法制定当初から運用されてきた性能型基準は評価の精度は高いのですが、計算が複雑で分かりづらい難点があります。そこで、2003年の省エネ法の改正により、省エネ基準の対象が大幅に拡大されたことから、積極的な評価を促進するために簡単な作業でもって省エネ基準に対する適合性の判断が行なえる基準も必要と考えられることから制定されたのが、仕様型基準です。

代表的な省エネ手法や要素の効果をポイント化してチェックリストにしていることから、仕様型基準は通称ポイント法と呼ばれます。

ポイント法は、簡便であるという利点は有していますが、その策定に当たっては非常に単純な建物や設備のモデルが想定されており、実際のやや複雑な建物や設備に対してポイント法を適用すると、当然のことながら誤差が生じます。このため、床面積が5000㎡以下の中規模なものに対してだけ適用できることになっています。

さらに、2010年4月から省エネ措置の届出が義務付けられる床面積300㎡以上の建築物については、2000㎡未満のものに対してのみ、現行のポイント法より簡易に評価できるポイント法が整備される予定です。

(2)ポイント法の計算

対象建築物にとって重要な照明区画または床面積の大きな照明区画それぞれについて優先順を決め、延べ面積の50%を超えるまでを対象とし評価します。照明区画とは、同種の照明システムが設置され、同質の照明環境が形成されており、他と容易に区別できる空間的なまとまりを意味します。

方法としては、表3.9から表3.11の評価ポイントを合計し、修正点（基礎点）の80点を加えた数値が100点以上となるようにします。

表3.9 照明設備の照明効率に関する評価点

各項目に係わる措置状況に応じてそれぞれ次の表に掲げる点数を合計したものとする。

<table>
<thead>
<tr>
<th>項目</th>
<th>措置状況</th>
<th>点数</th>
</tr>
</thead>
<tbody>
<tr>
<td>光源の種類</td>
<td>蛍光ランプ(コンパクト型の蛍光ランプを除く)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>総合効率が100ルーメン/ワット以上のものを採用</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>総合効率が90ルーメン/ワット以上100ルーメン/ワット未満のものを採用</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>コンパクト型の蛍光ランプ、メタルハライドランプ又は高圧ナトリウムランプを採用</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>LED型ランプを採用</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
<tr>
<td>照明器具の器具効率</td>
<td>下面開放器具</td>
<td>0.9以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8以上0.9未満</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8未満</td>
</tr>
<tr>
<td></td>
<td>ルーバ付器具</td>
<td>0.75以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6以上0.75未満</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6未満</td>
</tr>
<tr>
<td></td>
<td>下面カバー付器具</td>
<td>0.6以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5以上0.6未満</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5未満</td>
</tr>
<tr>
<td></td>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
</tbody>
</table>
1. 「総合効率」とは、蛍光ランプの全光束（単位：ルーメン）を蛍光ランプと安定器の消費電力（単位：ワット）の和で除した数値とする。
2. 「器具効率」とは、照明器具から出る総光束（単位：ルーメン）を蛍光ランプ、メタルハライドランプ又は高圧ナトリウムランプの定格光束（単位：ルーメン）で除した数値とする。
3. 「下面開放器具」とは、下面にカバー等が付いていないものをいう。
4. 「下面カバー付き器具」とは、下面に透光性カバー等が付いたものをいう。
5. 「LEDランプ」とは、電圧を加えた際に発光する半導体素子を用いたランプをいう。

表3.10 照明設備の制御方法に関する評価点
措置状況に応じて次の表に掲げる点数とする。

<table>
<thead>
<tr>
<th>措置状況</th>
<th>点数</th>
</tr>
</thead>
<tbody>
<tr>
<td>7種類の制御の方法（カード、センサー等による在室検知制御、明るさ感知による自動点滅制御、適正照度制御、タイムスケジュール制御、昼光利用照明制御、ゾーニング制御及び周囲制御のことをいう。以下この表において同じ。）のうち3種類以上を採用</td>
<td>22</td>
</tr>
<tr>
<td>7種類の制御の方法のうち1種類又は2種類を採用</td>
<td>11</td>
</tr>
<tr>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
</tbody>
</table>

表3.11 照明設備の配置、照度の設定並びに内装仕上げの選定に関する評価点
各項目に係わる措置状況に応じてそれぞれ次の表に掲げる点数を合計したものとする。

<table>
<thead>
<tr>
<th>項目</th>
<th>措置状況</th>
<th>点数</th>
</tr>
</thead>
<tbody>
<tr>
<td>照明設備の配置、照度の設定</td>
<td>事務室の用途に供する照明区画の面積の9割以上に対してTAL方式を採用</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>事務室の用途に供する照明区画の面積に対して5割以上9割未満に対してTAL方式を採用</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
<tr>
<td>室等の形状の選定</td>
<td>室指数が5.0以上</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>室指数2.0以上5.0未満</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
<tr>
<td>内装仕上げの選定</td>
<td>天井面の反射率が70パーセント以上、かつ、壁面の反射率が50パーセント以上、かつ、床面の反射率が10パーセント以上</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>天井面の反射率が50パーセント以上、かつ、壁面の反射率が30パーセント以上50パーセント未満、かつ、床面の反射率が10パーセント以上</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>上記に掲げるもの以外</td>
<td>0</td>
</tr>
</tbody>
</table>

1. 「TAL」方式とは、タスク・アシシスタント照明方式をいう。
2. 室指数kは、次の式によって計算した値とする。

\[k = \frac{X \times Y}{H \times (X+Y)} \]

この式において、X、Y及びHは、それぞれ次の数値を表すものとする。

\(X \) 室の間口（単位：メートル）
\(Y \) 室の奥行き（単位：メートル）
\(H \）作業面から照明器具までの高さ（事務室及び教室以外の室にあっては床の上面から天井までの高さ）（単位：メートル）

3. 「反射率」とは、天井面、壁面、床面における個々の部材の反射率をそれぞれ表面積を基準としたものである。